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An improved theory of the vibrations of multilayer orthotropic plates of finite dimensions is proposed, 

based on the method of hypotheses [l, 21 and expansion of the normal displacements in powers of the 

plate thickness. The choice of the hypotheses is governed by the possibility both of using the results in 

practice and of solving new problems in the theory of the vibrations of an elastic rectangle. 

CONSIDER a cylindrical stiff plate consisting of an odd number (Zm+l) of orthotropic layers 
arranged symmetrically about the middle layer, to which we assign the index zero (i =O). 
Layers above the middle one are assigned positive indices from i = 1 to i = M, and layers below 
it, negative indices from i =-1 to i = m. Layers symmetrical about the middle one have the 
same thicknesses and elastic parameters. The directions of the cylindrical system of 
coordinates X, Y, 2 are assumed to coincide with the principal anisotropic directions of the 
elastic material. The origin is situated at the half-thickness of the plate. 

The main aim of this paper is to study the motion of the multilayer plate in the X02 plane, 
which cuts across the cross-section of the cylinder and is perpendicular to the OY axis. Our 
derivation of the equations of motion will be based on a two-dimensional formulation of the 
problem and the following hypotheses: 

1. the differential equations of equilibrium and the components of the strain for a weakly 
bent plate will be based on the assumption that the stressed state of the curved plate is identical 
with the corresponding state for a flat plate, i.e. the curvature of the plate may be ignored in 
the equations of motion; 

2. the shear stress Fxzi varies with the thickness of the multilayer plate in accordance with a 
given law [l, p. 461 

F’i = cP(x*t)f(z)* f(Z) = f t-z>, f(z) I*=*lt = 0 

cp(x, f) = (4% Eli E F, 

3. the normal displacement may be expanded in powers of the plate thickness 

where x, t are curvilinear coordinates, t is the time, 2h is the thickness of the plate, Fxzi and UZi 
are the shear stress and normal displacement in the ith layer, f(z) is a function characterizing 
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the variation of the shear stress with plate thickness, cp is an unknown function, a is the 
unknown angle through which the plate rotates as a whole, Wj is the unknown component of 
the normal displacement in its expansion in powers of the plate thickness, and 2N + 1 is the 
number of expansion terms. 

The equilibrium conditions for the material of the ith layer for harmonic variations 
in weakly curved cylindrical coordinates are given by the following differential equations 
12, p. 181 

ikf, fax + iIF,. / az + O’piU, = 0 

h,i / az + aFni / ax + O’piU, = 0 
(1) 

where i is the layer index (i varies from -m to m), pi is the density of the layer material, UXi, 
U, and o,, ozi are the displacements and principal stresses in the layer in the direction 
indicated, Fxli is the shear stress, and o is the angular frequency. 

Substituting the given expressions for the shear and normal stresses (evaluated at the middle 
surface of the displacement) into the second equilibrium condition (l), integrating the result 
with respect to the normal coordinate z from zi to z (where z lies within the ith layer), and 
taking into account that the normal stresses at the layer faces must be equal, we find an 
expression for the normal component of the principal stress at any point of the multilayer plate 

UX(RZio + fro(Z)) + ‘,~’ Wj<f,(~) + RZii) 
1 

Ji(z) = j ftz)h9 lijCz) = pi j 0 z Idz 
li 4 h 

RZ f*. i = RZ frT1, j +f*sTl, j(Z*s)* R&j =.O* G=O 
S =1,2 ,..., m, j=0,1,...,2N+l 

where o is an unknown constant of integration, Z,, Z,, . . . , Z,,,+l are the coordinates of the 
upper faces of layers 0, 1, . . . , -m, and Z_I, Z_z, . . . , Z_m_1 are those of the lower faces of layers 
0,-l ,..., -m. 

Using (2), the fact that f(z) is an even function and the symmetrical arrangement of the 
layers about the middle layer, we find an equation for the equilibrium of the plate and the 
constant of integration 

02-ol = Q,,a(p/~-2~2[~Z,+,,o+WORZ,+l,o+W2RZm+~.2+...l 

(32+c71 = 20 - 2o’[W,RZ,,,+,,, + W&?m+1,3 + . ..I 
(3) 

where o, and o, are the normal stresses at the lower and upper faces of the plate. 
Differentiating the first equation of (3) with respect to X, we obtain the first equation of 

motion of the plate 

a(0,--0,)/ax = ~,,a2~~a~2+~~~-~~,+~,2ao+~,a2+~,a,+...) 

ai = aWj Iax, Wj= Cj+jCtjdr+ 4, = - =&+I.zs-~ (4) 

4 = 2RZm+1,09 S=2.3 ,..., N+2. j=O,l ,...,2N+1 

where aj is the unknown component of the angle of rotation of the plate in its expansion in 
powers of the thickness, and Cj are unknown constants of integration. 
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The stressed state of the orthotropic material of layer i is determined by the semi-inverse 
method of the theory of elasticity, using Hooke’s law [l, pp. 21,461 

=xi = B;e, + ~a,, Bi = Ei 
1 - &I& 

. 

F~i = Gieni, 

(5) 

where e,, e,, are the volume and shear strains in the ith layer, u’;*, ui,, &, u’;~ are Poisson’s 
ratios, E;‘, Ei are Young’s moduli and Gi is the shear modulus. 

Let us rewrite the last equation of (5) in terms of weakly curved cylindrical coordinates 
[2, p. 181, in the form 

auti~az+auti~ax = G,:*f(z)cp(X,t) 

Integrating this equation with respect to z from zi to z (where z is within the ith layer) and 
taking into account that the displacements at the layer faces are equal, we obtain an expression 
for the tangential displacements at any point of the plate 

?N+I z z j 
Uti = b+V-az - C - - 

0 j=O (l+i) h 

aj + Q(Mi+ Ji(z)/Gi) (6) 

VxoI,=o = b+ V, V(x,t) f v, eti = auk/ax 

4s = .&;,I + 4srl (.z*,)/ GM,. 41 = 0 

S = 1,2,...,m+l 

where b is an unknown constant, equal to the tangential displacement of the plate as a whole, 
and V is the tangential displacement of the middle surface due to the plate vibrations. 

Substituting (6) into the first equation of (5), we obtain 

oi = Bi$ - Bi 
X 

&2 + $2 + . ..) -i- A;a - 

z%+$%+ . ..) + ~[Bi(A*i+ ~) - Ai~o(x)] - 

(7) 

-02Ai[~(RZio +Iio(Z))+ Wo(RZio +fio(z))+ W,(RZi, +li2(z)) +...I 

Using the first equation of equilibrium (5), Eqs (2)-(4), (7) and the fact that the moments 
acting over the cross-section of the plate are equivalent, we obtain the equations of the plate 

$Dl_J+o’R(i =T $J, +a,)+o’Kb 

aca, + 0~1 I ax 
a2 

sQW+co2PW = 
-4Qf 3 

+ 02Ha 

-4Q(2N + 3)-’ (8) 

D=(Dis)* R=(Rjs), T=(q), K=(K~) 
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Q = (rzi,), P=(Pjs), H=(Hj), ~91 = 1,2,..., Iv+2 

U’ = (V,a1,...,a2N+1)7 W’ = (qba, ,..., a,,) 

where U and W are column-matrix functions, U’ and W’ are transposed matrix functions, and 
M 0, a”, M 2N+1 are the moments of the zeroth, first, second, etc., orders, The explicit form of 
the matrix coefficients will be given at the end of the paper. 

The motions of the plate are described by two systems of matrix wave equations-symmetric 
and antisymmetric vibrations. It is obvious from (8) that the number of equations in each 
linear system of differential equations and the number of boundary conditions are determined 
by the appropriate terms in the expansion of the normal stress in series in powers of the plate 
thickness. If only the zeroth term of this series is considered, one obtains the usual equation for 
the symmetric vibrations, while the system of equations for the antisymmetric vibrations 
differs from the usual equations only in its notation and in the unknown functions that have to 
be determined [l, p. 2381. The difference is that the equations of motion and approximate 
boundary conditions are written in terms of the unknown angles of rotation of the plate, not in 
terms of the unknown displacements. The new notation for the equations of motion and the 
boundary conditions is essential in studying vibrations of thick multilayer plates of finite 
dimensions, since in that case the operators describing the homogeneous matrix equations 
have adjoints [3, p+ 413; 4, p. 201. 

The general solution of problem (8) for plates of finite size may be sought as a series in 
column-matrix eigenfunctions [S, p. 783, where the latter satisfy the homogeneous wave 
equations of the natural vibrations of the plate 

(L,+c&0U, =O, Ui =(Vn,a,,,...,aZN+l,n) 

W, +&W = 0, ~‘=(‘P,,a,,,...,a,,,,) 

L, = D8/ax2, f., = Qa2/ax2, 0’ = (O,...,O) 

MO” Ml1 
V 

QZI '-9 Q2.~+2 
. . . . . +I& i =g : 

4N,n M2N+1,1 k Q~+2,1 --- QN+~.N+~ 

(9) 

Y 

w, 

Here 0 is a column of zeros, n and 1 the mode numbers of the natural vibrations of the plate, 
o, and E, are the natural angular frequencies, U,, and W, are the column-matrix eigen- 
functions of symmetric and antisymmetric vibrations, MO,, . . . , MZN,n, Ml,, . . , , M2N+1,, are the 
moments of different orders due to the appropriate natural vibrations in the cross-section of 
the plate, and L, and L, are the matrix-valued differential operators of the symmetric and 
antisymmetric vibrations. 

We will introduce an abbreviated notation for convolutions of matrix expressions 

(y,z) = jz’(x)y(x)dr = 7 y’(x)z(x)dr 
a a 

(10) 

where y and z are column matrices, jj is a column matrix whose elements are the complex 
conjugates of those of y, and the prime denotes transposition. 

Using (10) and applying Lagrange’s formula [4, p. 201 to the matrix equations (9), we obtain 
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(T, L,U,,) = (f’ D&Y, /a~ - U;D’aT / &) If: + (LIT. U,,) 

(Y.L,~) = (iQay/ax--~pau'm)l: + (L;Y,w,) 

It is obvious that, assuming homogeneous boundary conditions at the faces of the plate for 
the problem and its adjoint, the operators describing the plate vibrations have adjoints [3, 41, 
i.e. 

(T,L,U,) = (L:W,). (Y, Law,)= (L;Y,w,) 

(Lf, L.* are the adjoint operators). 

APPENDIX 

The matrix coefficients are 

Djl =I 
R g *j-l %I 

j*=X2pi_ 0 I 2j-1 h 
4 

Dii =-z 4 g *j+*s-4 %+I 

(s-1)(2j+2s-3) 5; 0 I , Kj = .-Rj, 

$ 

R js = C 

zi+’ 2A. z 2j-1 %+I 

+ RZm+1,2s-3 Z - - 

0 I 2j-1 h 
*i ‘i 

j = 1.2,... , 

QII = 4/5h3. 

N + 2. s = 2.3,.... N+2 

41 = 0. H, = 2RZ,,,+,,,. 4, = -2RZm+,,2,_4. Q,, = 0 

Qf, = -I2 
2Bi 

(2s-3)(2j+2s-5j 

Pj# = 
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s, j = 2,3 ,..., N+2 

Summation is from i = 0 to i = m. 
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